亚洲区一_久久综合激情_亚洲97_午夜影院在线视频_国产成人福利_亚洲一区二区精品视频

首页 优秀范文 光纤通信技术论文

光纤通信技术论文赏析八篇

发布时间:2022-04-25 07:13:46

序言:写作是分享个人见解和探索未知领域的桥梁,我们为您精选了8篇的光纤通信技术论文样本,期待这些样本能够为您提供丰富的参考和启发,请尽情阅读。

光纤通信技术论文

第1篇

1.1损耗低,传输距离远

与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。光纤通信在长距离传输中的优势非常明显。目前光纤通信的最长通信距离达到10000m以上。

1.2抗干扰能力强

与其他光缆相比,光纤通信具有非常明显的优点———抗电磁干扰能力极强。光纤通信设备的主要成分是SiO的应用给光纤通信技术带来无可比拟的优势。由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰能力。光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。

1.3安全性和保密性高

因为光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。而且一个光缆内的很多光纤线之间也不会相互干扰,因此,光通信的抗干扰能力很强,保密性和安全性非常高。此外,光纤的重量很轻、体积较小,这样既节省空间又使得设备的安装非常方便。另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使用寿命很长。光纤通信技术这些优势使其在日常生活中的应用范围和领域越来越广。

2光纤通信技术在我国的发展现状

2.1普通单模光纤的现状

光纤分为单模光纤和多模光纤两大类。目前,普通单模光纤是我们生活中最常见的光纤。单模光纤只能传输一种模式的光,且对光源的谱宽及稳定性都有较高的要求。随着光纤通信技术的发展,单模光纤的传输距离和信息容量也在不断增加,G652.A光纤的性能还能进一步优化和提高。符合ITUTG654规定的截止波长的单模光纤和符合G653规定的单模光纤是对G652.A光纤进行了改进。

2.2接入网光缆的发展现状

光纤接入网指的是以光纤为主要媒质实现接入网的信息传送。光纤接入逐渐替代原有电缆,成为通信接入网未来重点的发展方向。接入网光缆的发展趋势主要体现在接入网的光缆距离不断缩短、分支越来越多、分插频繁等。通常情况下,接入网的光缆会采用增加光纤芯数的方式来增加网络容量。尤其是城市的光纤管道,由于管道内径有限制,只能通过增加管内光纤芯数和光纤的集装密度来增加网络容量,同时需要减轻光缆的重量,缩小光缆的直径。通常,接入网光纤使用G652普通单模光纤或G652C低水峰的单模光纤,而前者在我国使用较多。

2.3室内光缆的发展现状

室内光缆指的是光传输载体(光纤)经过一定技术手段处理而形成的线缆,通常需要同时支持语音、数据以及视频等信号传输。室内光缆主要包括综合布线与局内光缆两大部分。其中综合布线的光缆一般供用户使用,放置在室内用户端,而局内光缆放在中心局或其他各类电信机房内。室内光缆结构的设计和应用容易受到建筑物本身的限制及光缆材料多样化的影响,因此室内光缆相对复杂。虽然其抗拉度较小,保护层也较差,但是室内光缆仍然有经济、便捷、便于信息传递等自身优势。室内光缆传输信息速度很快,而且具有信号稳定、清晰、强烈,抗干扰性好,信息流量大等优点。

2.4通信光缆的发展现状

通信光缆主要包括多根光纤芯和包层组成的缆芯、外保护层,属于全介质光缆,是电力系统中最为理想的通信线路。通信光缆主要依靠电流传输信号,在数据信息传输方面具有一定优势,但是其传输信息量较小。ADSS光缆则因为其可以单独布放,比较适用于电力通信领域。目前我国电力系统改造过程中广泛应用ADSS光缆,但是我国通信光缆的产品结构和性能仍然需要进一步完善。

2.5塑料光纤的发展

塑料光纤在我国也得到了广泛应用,其成本低廉、传输速度较快,是优质的短距离信息传输介质。它主要利用光的全反射或者光在塑料纤维内的跳跃来进行传输,因此在数据传输系统领域有巨大的潜在市场。塑料光纤可以应用于海底。在海底进行铺设时,海底光纤使用绝缘材料包裹导线,同时其两端采用激光器,大大节约成本,相应的通话费用也有一定的减少。

3我国光纤通信技术在未来的发展趋势

3.1超大的容量,超长的距离

超大容量、超长距离的传输技术在我国通信技术领域将有广阔的应用前景。波分复用技术(WDM)通过增加单根光纤中传输的信道数,大大提高光纤传输系统的传输容量。目前1.6Tbit/s的光波分复用系统已经大量商用,同时全光传输的距离也在逐渐增加。而光时分复用技术(OTDM)通过提高单信道速率来提高传输容量,使目前单信道最高速率达到640Gbit/s。要想进一步提高光纤通信的传输速度和传输容量,仅仅依靠光波分复用技术或光时分复用技术是很难实现的,必须同时结合光时分复用和光波分复用技术,只有这样才能进一步提高光纤的传输速度和容量。

3.2光网络智能化

智能化的光网络是我国光纤通信技术未来非常重要的发展方向。近50年的发展历程中,信息传输一直占据着光纤通信技术的主导地位。随着计算机技术的迅猛发展,网络技术和通信技术实现完美结合,进一步促进光网络通信技术朝着更高更好的方向发展。现代化的光网络不仅能实现信息数据的传输,同时结合计算机控制技术、自动发现功能及更加完善的自我保护修复能力,真正形成智能化的光网络。

3.3摆脱电处理过程,实现全光网络

第2篇

在应用过程中,按照用途将光纤进行分类,可分为传感光纤和通信用光纤;按照制作工艺分类,可分为材料组成类、制造工艺类和光学特性类;按照传输介质分类,可分为专用和通用两种,并且,功能器件光纤可以应用于放大光波、分频、整形和光振荡等方面,从而以不同形态呈现在人们眼前。根据光纤通信的应用情况可知,光纤通信的基本构成结构包括光源、光纤和光检测器三部分,具有如下几个特点:

(1)信号干扰小、保密性强。

(2)通信容量超大,可完成远距离传输。一般一根光纤的带宽在20THz以上,在没有中继传输的情况下,可传输到几十公里以上。

(3)重量较轻、细径较细,一般制作材料是石英,大大降低了有色金属的耗损,使资源得到合理利用。

(4)不受外界因素影响,在任何情况下可使用,具有较长使用寿命。

(5)较强抗电磁干扰能力和绝缘性能,因此,信息传输质量非常好。

(6)没有辐射,不容易被窃听,提高信息传输的安全性。

(7)环绕性好、抗腐蚀能力强,在使用过程中,不会出现火花,减少安全事故。

2光纤通信技术在电力通信中的应用

在电力通信中,电力特种光纤包括OPGW(光纤复合地线)、MASS(金属自承光缆)、OPPC(光纤复合相线)、ADL(相/地捆绑光缆)、ADSS(全介质自承光缆)和GWWOP(相/地线缠绕光缆)等六种,而我国应用较多的电力特种光缆是ADSS和OPGW两种,大大提高了电力通信的工作效率,使电能损耗得到大量减少。

2.1ADSS(全介质自承光缆)

根据我国电力通信的发展来看,ADSS(全介质自承光缆)在35KV、110KV、220KV的电压等级输电线路上得到了广泛应用,尤其是目前已建成的线路上使用范围非常广,使电力部门利用高压输电线杆塔建设通信网络变得更加方便和快捷,大大减低工作人员的工作量和建设成本。在进行光缆设计时,对温差、风速和气候等外界因素进行了充分考虑,因此,ADSS(全介质自承光缆)具有很强的抗震动性、抗冲击性,可以随意弯折和抗老化性,并且,成本较低、安装非常方便、易携带,给杆塔带来的负载非常小。由于ADSS(全介质自承光缆)具有光纤传输性能强、环境性能好和光缆机械性能卓越等特点,在实际应用过程中,可以与高雅电力传输线架设在同一根电杆上,因此,成为了电力系统中最完美的电网通信传输介质,确保了电网通信的信号质量,使光缆传输效果得到大大提高。我国现代化建设中,ADSS(全介质自承光缆)在山区、跨度较大区域和雷电集中区等地方的线缆架空敷设中非常适用,在满足了电力部门自身的通信要求的同时,为通信业务不断发展和开展新业务提供新的途径。

2.2OPGW(光纤复合地线)

在电力通信中,OPGW(光纤复合地线)是电路传输线路的地形中含有供通信用的光纤单元,由此可见,架空地线中含有光纤,OPGW(光纤复合地线)是架空地线和光缆的复合体。由于OPGW(光纤复合地线)的一次性投入较大,在新建线路或旧线路更换时会选择使用,具有可靠性高和不需要维护的特点。在实际应用过程中,OPGW(光纤复合地线)拥有两种功能:一是,与复合在地线中的光纤一起完成信息传输,二是作为输电线路的防雷线,可以对输电导线起到屏蔽保护的作用。一般情况下,OPGW(光纤复合地线)有铝管型、钢管型和铝骨架型三种,具有光学性能、电气性能和机械性能,可以应用于具有架空接地线的输配电线路中,从而使光纤的可靠性和安全性得到大大提高,使我国输电容量得到机一部提高。在新建线路的应用中,OPGW(光纤复合地线)不需要增加建设成本,在旧线路更换中,只需要将原来的地线更换掉就可以了,并且不需要对杆塔进行加固或重新设计等,从而大大减少工作人员的工作量。另外,OPGW(光纤复合地线)的安装非常方便,不需要特殊的工具,成为我国电力事业未来发展的重要研究方向。

3结束语

第3篇

1.1光纤通信系统概述光纤通信系统以光纤为传输介质,主要由数据源、光发送端、光学信道、光接收机等。其中,数据源中包括所有数据、语音业务经过信道编码形成的信号;光发送机将信号变成适合在光学信道上传输的光信号,并从中提取信息,转换成电信号,最后得到相应的语音、数据等信息。如图2所示为光纤通信系统结构示意图。1970年,美国康宁公司研发出世界上首根套层光纤,其损耗率为20db/km,它使得光纤通信成为可能。1975年,贝尔实验室开展世界上第一次光纤点到点的通信试验。1977年,贝尔实验室和日本电报电话公司同时研制成功寿命在10年左右的半导体激光器,使得光纤通信步入实用化阶段。同年,美国兴建起世界首个光纤通信系统,传输速率为45MB/s,通信窗口为850nm。经过三四十年的发展,光纤通信有了巨大进步和革新,尤其是在上世纪90年代,光纤通信系统迎来其发展高峰期,大量的技术和设备被研发出来,解决了线路中的电子瓶颈,通信窗口也迅速移到1550nm。到今天,光波分复用技术的发明又为光纤通信系统带来新的发展面貌。

1.2在光纤通信系统中的应用第一,在接入网中的应用。光纤接入网的接入方式可分为无源接入和有源接入两种,其中,无源光网络是一种非常优质的接入方式,具有低成本、光纤少、中心局终端少、雷电影响小、电磁干扰少等优点,后期的运营维护成本也较少,其扩展性强,能随着技术的发展而升级改造。带宽大、传输距离可达20km。正是由于诸多的优点无源光网络接入方式成为光纤接入网的首选接入方式,其中,上行接入技术乃技术关键点和难点,不能采用以往的以太网CSMA/CD媒体接入控制方式进行上行接入,可以将光波分复用技术应用到其中,进行上行接入。基于光波分复用技术的波分多址上行接入方式以波长为用户端ONU的标识,实现上行接入,具有较大的带宽,能充分利用光纤的大带宽,实现对称宽带接入。同时,该种接入方式还能有效解决ONU测距、快速比特同步等困难,在网络管理和系统升级方面具有显著优势。随着光波分复用技术的发展,光波分复用器材价格越来越低,性能越来越优,这有效推动了无源光网络的发展。第二,在城域网建设中的应用。传统电信城域网无法适应数据业务突变性特点,承载多业务的带宽效率低。因此,当前城域网发展的目标为面向数据和多媒体业务应用的IP优化网络。基于IP和光波分复用技术建设的城域网成为新型城域网的主要方案,其采用IPoverWDM传输技术,就是使IP数据包直接在光路上跑,减少网络层之间的冗余部分,该方法省去了中间的ATM层和SDH层,传输效率高、运行成本低,用户网络费用少,非常适合于城域网建设。从通信协议角度来讲,该方案的网络结构层次为IP业务层和光网络层,光网络层又可以分成光网络适配子层、光复用子层、光传输子层,其中,光复用子层为核心,它完成光复用协议的相关内容,复用带宽、保护线路、定位故障点。该方案有效应用了光纤的巨大带宽资源,提高带宽和传输速率,实现数据格式、调制方式的透明化,实现与现有通信网的兼容,支持网络升级,具有极高的推广性和生存性。同时,该方案也有一定缺点,网络管理与其传输的信号和网管分离开来,只是点对点的拓扑结构方式,没有实现真正意义上的光网络。在光纤通信系统中,若没有应用光波分复用技术,则需要多投入n-1根光纤,若光纤通信方式为多个用户协同工作,则适用光波分复用技术能更好突出光波分复用技术的优势,实现单根光纤传输容量成几倍乃至几十倍的增长,更好利用现有的光纤带宽资源。在远距离运输中,适用WDM技术有助于节省大量光纤,降低光纤通信系统的开发建设成本。WDM以波长路由代替传统电子信号路由,以解复用器代替光电转换交换器,消除延迟转发等瓶颈问题,保证传输的透明性。总而言之,光波分复用技术在光纤通信系统中有广阔的应用空间,能带来良好的应用效果,值得大力推广。

1.3光波分复用技术的发展趋势随着光波分复用技术的发展和应用,光纤通信朝着高速率、大传输容量方向发展,光纤通信对光波分复用技术提出更高要求,进一步推动光波分复用技术的发展。作为一种对米元件依赖性强的技术,未来的WDM技术发展方向是研发出更多新的、性能更好的米元件,开发低价的小型集成光元件,如:放大器、光交叉连接器、光分插复用器、滤波器、信号调节器、光存储器等。其实现互通性和标准化服务,还必须实现传输协议和网关标准的规范化。伴随着光纤通信系统的发展,以WDM为基础的光网络层将逐步实现全光网络连接,实现用户与光纤通信网络的亲密接触,到时候,人们可以利用WDM技术实现可视电视、可视会议、远程技术等支援,进行语音、数据、图像等多媒体信息的传输、处理和交换。简单来说,WDM技术的完善将推动广电数字网络的发展,用户对广电数字网络的需求又成为WDM发展的巨大推动力。WDM技术第一次实现了电信号到光信号的转换,它标志着光通信时代的到来。当前的研究重点是密集波分复用技术,其商用水平为320Gbit/s,也就是说,一对光纤可传送400万话路,商用系统的传输能力仅是单根光纤传输容量的百分之一。在光纤网络中,FTTH解决的是光纤通信“最后一公里”的问题,日本、美国、韩国紧锣密鼓的建设FTTH网络,进行大规模建设,将光波分复用就似乎应用其中,发展成为今天的WDM-PON。在我国,FTTH网络的技术越来越多,且理论也较为完善,但却还媒体一项技术被认为是完善的技术,这个时候充分利用无源光网络技术则是可行的一种选择,推动光波分复用技术的发展,逐渐根据社会需求,采用WDM-PON方式建设FTTH网络。

2结论

第4篇

论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。

1.光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2. 光纤通信技术的特点

(1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3. 光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。 转贴于

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的 CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV 大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网 PSTN 中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大, 但还有许多应用能力在闲置, 今后随着社会经济的不断发展, 作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力, 推动通信网络的继续发展。因此, 光纤通信技术在应用需求的推动下, 一定不断会有新的发展。

参考文献

[1]王磊,裴丽. 光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

[2]何淑贞,王晓梅. 光通信技术的新飞跃[J]. 网络电信,2004,(2)

[3]辛化梅,李忠. 论光纤通信技术的现状及发展. 山东师范大学学报,2003,4

第5篇

[论文摘要]光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信和军用通信等领域。综述我国光纤通信研究现状及其发展。

近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围

不断扩大。

一、我国光纤光缆发展的现状

(一)普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654 规定的截止波长位移单模光纤和符合G.653 规定的色散位移单模光纤实现了这样的改进。

(二)核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

(三)接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

(四)室内光缆

室内光缆往往需要同时用于话音、 数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

(五)电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(一)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6 Tbit/的 WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与 WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

(二)光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100 Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能 EDFA 方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(三)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以 WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。

参考文献

[1]辛化梅、李忠,论光纤通信技术的现状及发展[J]. 山东师范大学学报(自然科学版),2003,(04)

第6篇

关键词:光纤,语音,传输,光电检测

 

1、光纤通信系统的基本组成

最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波有0.85、1.31和1.55三个低损耗窗口。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。论文格式。在光纤通信系统中,光纤中传输的是二进制光脉冲'0'码和'1'码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。光纤通信系统的基本组成原理图如下图1-1所示:

图1-1光纤通信系统

1.1光发射端机

光发射机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆中传输。电端机就是常规的电子通信设备。光发射机的原理图如下图1-2所示:

图1-2光发射机原理框图

光源是光发射机的核心,其性能好坏将对光纤通信系统产生很大的影响。目前光纤通信系统使用的光源都是由半导体材料制成的,而半导体光源分两种:发光管LED和激光管LD。由于半导体激光器发出的是激光,发光功率大、谱线宽度窄,但电路结构复杂,温度特性差。而半导体发光二极管发出的是荧光,发光功率不大,谱线宽度宽,但电路结构简单、寿命长、价格便宜。在实验室中经常用到。

1.2光纤或光缆

光纤作为传输媒介,作用是将发射端机光源发出的光信号,经远距离传输后耦合到接收端机的检测器,完成信息传输任务。在通信中使用的光纤通常是由石英玻璃制成的,由纤芯和包层组成。目前,塑料光纤应用于低速、短距离的传输中。其构成光纤的纤芯与包层都是塑料材料。与大芯径50/125μm和62.5/125μm的石英玻璃多模光纤相比,塑料光纤的芯径高达200~1000μm,其接续时可使用不带光纤定位套筒的便直注塑塑料连接器,即便是光纤接续中芯对准产生 ±30μm偏差都不会影响耦合损耗。正是塑料光纤结构赋予了其施工快捷,接续成本低等优点。另外,芯径100μm或更大则能够消除在石英玻璃多模光纤中存在的模间噪音。论文格式。

1.3中继器

含有光中继器的光纤传输系统成为光纤中继通信。光信号在光纤中传输一定的距离后,由于受到光纤衰减和色散的影响会产生能量衰减和波形失真,为保证通信质量,必须对衰减和失真达到一定程度的光信号及时进行放大和恢复。中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。

1.4光纤连接器、耦合器等无源器件

由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。

1.5光接收端机

光收信机是实现光/电转换的光端机。 它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。光接收机原理图如下图1-3所示:

图1-3光接收机电路原理方框图

2、光纤语音电路设计

光纤语音电路由三部分组成:光发射电路、光纤和光接收电路。论文格式。其工作原理是:音频信号最初是声波,由发送器的电子麦克风转换为电信号。此信号由LM358组成的音频放大器放大,并且借助于一个单独的晶体管控制LED的端电压,将电信号转换为光信号。光信号送入光纤或光缆。在光纤或光缆的另一端,光信号照射到接收器的光电检测器上。光电检测器再将其转换为电信号。此信号被放大并送入扬声器转换为声波恢复为原始信号。

2.1、发射器电路板

此电路主要是把音频信号经麦克风转换为电信号,电信号经滤波器、多级放大器把微弱的电流信号转换为适合半导体二极管发光的电压信号,在晶体管的调制下把电信号转换为光信号送入光纤中进行传输。在发射器电路上有一个话筒和调制LED发光的线路。LED装在塑料壳中以便于连接光纤或光缆进行发送信号。在实验室里设计操作可以使用200m长的塑料光纤传送语音信号,也可以使用玻璃光纤在更远的距离内通信。光纤语音发射器电路如下图1-4所示:

图1-4光纤语音发射电路

2.2、光电接收器电路板:

在接收器电路板上通过光电检测器把光纤传输的微弱的光信号转换为电信号,经电容滤波、运算放大器放大,把电流信号转换为电压信号,放大到适合扬声器输出的电压,恢复原始的语音信号。光纤语音接收电路如下图1-5所示:

图1-5光纤语音接收电路

3、结 语

本文详细的介绍了光纤通信系统的组成,为设计光纤语音传输电路提供理论基础。在该电路系统中语音信号以光波形式在光缆内传输、不受任何电场和磁场的影响。传输距离远,抗干扰能力强。每个电路板需要一个9V电池,元件简单,易于实现,在实验室就能操作完成。

参考文献

[1] 顾畹仪,李国瑞.光纤通信系统[ M].北京:北京邮电大学出版社,2006.

[2]周增基,周洋溢,胡辽林,任光亮,周绮丽.光纤通信[M].西安:西安电子科技大学出版社,2008.12.

[3]田国栋.光纤通信技术[M].西安:西安电子科技大学出版社,2008.9.

[4]杜庆波,曾庆珠,李洁,王文轩.光纤通信技术与设备[M]. 西安:西安电子科技大学出版社,2008.2.

[5] 杨家德.光电技术使用电路精选[J]..四川:成都科技大学出版社,1996.

[6] ic37.com/

第7篇

论文摘要: 介绍了光纤通信实验教学存在的主要问题,提出了一些改革措施:实行实验室定时定期开放;开发综合型、系统型实验;构建课前、课堂、课后三位一体的实验教学平台;改革实验考核方法等。

《光纤通信》课程是我院通信专业学生的必修课和其他专业的选修课,光纤通信实验是该课程的重要实践性教学环节。搞好实验教学,可以巩固学生的光纤通信理论知识,提高学生的实践动手能力、创新意识和工程设计能力。

光纤通信实验教学存在的主要问题

学生重视不够、实验教学地位不突出实验课时少,一般只有10学时,在大四的上学期进行,此时正是学生考研前的复习冲刺阶段,很多学生不重视实验教学,缺课现象比较严重,实验教学组织起来困难,教学质量较差。

实验项目偏少由于实验课时所限,实验项目偏少。

缺少综合型、系统型实验现开设的实验以验证型实验为主,现有实验箱的实验方法与实际工程的测试方法有一些区别,通过已开设的实验学生难以真正掌握实际工程的测试方法。缺少综合型、系统型实验,不利于学生对知识的综合运用和建立系统工程的概念。

学生的实验热情不高由于实验成绩在课程总成绩中仅占10%,学生普遍不重视实验教学,实验热情不高,抄袭实验报告的现象比较严重。

实验教学效率较低由于指导教师在实验前详细讲解实验指导书上的内容,并且实验指导书上的实验步骤很具体,学生据此可顺利完成实验。这种做法使学生产生了依赖心理,不利于发挥学生的主观能动性,不利于提高学生的动手能力。

我们希望通过改革解决上述问题,激发学生的学习热情和实验兴趣,变学生被动操作为主动思考,使学生掌握系统工程的设计、测试方法,提高实验教学质量。  光纤通信实验教学改革的措施

第8篇

论文摘要:随着计算机技术的广泛普及与计算机远程信息处理应用的发展,数据通信应运而生,它实现了计算机与计算机之间,计算机与终端之间的传递。由于不同业务需求的变化及通信技术的发展使得数据通信经过了不同的发展历程。

数据通信是以“数据”为业务的通信系统,数据是预先约定好的具有某种含义的数字、字母或符号以及它们的组合。数据通信是20世纪50年代随着计算机技术和通信技术的迅速发展,以及两者之间的相互渗透与结合而兴起的一种新的通信方式,它是计算机和通信相结合的产物。随着计算机技术的广泛普及与计算机远程信息处理应用的发展,数据通信应运而生,它实现了计算机与计算机之间,计算机与终端之间的传递。由于不同业务需求的变化及通信技术的发展使得数据通信经过了不同的发展历程。

1通信系统传输手段

电缆通信:双绞线、同轴电缆等。市话和长途通信。调制方式:SSB/FDM。基于同轴的PCM时分多路数字基带传输技术。光纤将逐渐取代同轴。

微波中继通信:比较同轴,易架设、投资小、周期短。模拟电话微波通信主要采用SSB/FM/FDM调制,通信容量6000路/频道。数字微波采用BPSK、QPSK及QAM调制技术。采用64QAM、256QAM等多电平调制技术提高微波通信容量,可在40M频道内传送1920~7680路PCM数字电话。

光纤通信:光纤通信是利用激光在光纤中长距离传输的特性进行的,具有通信容量大、通信距离长及抗干扰性强的特点。目前用于本地、长途、干线传输,并逐渐发展用户光纤通信网。目前基于长波激光器和单模光纤,每路光纤通话路数超过万门,光纤本身的通信纤力非常巨大。几十年来,光纤通信技术发展迅速,并有各种设备应用,接入设备、光电转换设备、传输设备、交换设备、网络设备等。光纤通信设备有光电转换单元和数字信号处理单元两部分组成。

卫星通信:通信距离远、传输容量大、覆盖面积大、不受地域限制及高可靠性。目前,成熟技术使用模拟调制、频分多路及频分多址。数字卫星通信采用数字调制、时分多路及时分多址。

移动通信:GSM、CDMA。数字移动通信关键技术:调制技术、纠错编码和数字话音编码。

2数据通信的构成原理

数据终端(DTE)有分组型终端(PT)和非分组型终端(NPT)两大类。分组型终端有计算机、数字传真机、智能用户电报终端(TeLetex)、用户分组装拆设备(PAD)、用户分组交换机、专用电话交换机(PABX)、可视图文接入设备(VAP)、局域网(LAN)等各种专用终端设备;非分组型终端有个人计算机终端、可视图文终端、用户电报终端等各种专用终端。数据电路由传输信道和数据电路终端设备(DCE)组成,如果传输信道为模拟信道,DCE通常就是调制解调器(MODEM),它的作用是进行模拟信号和数字信号的转换;如果传输信道为数字信道,DCE的作用是实现信号码型与电平的转换,以及线路接续控制等。传输信道除有模拟和数字的区分外,还有有线信道与无线信道、专用线路与交换网线路之分。交换网线路要通过呼叫过程建立连接,通信结束后再拆除;专线连接由于是固定连接就无需上述的呼叫建立与拆线过程。计算机系统中的通信控制器用于管理与数据终端相连接的所有通信线路。中央处理器用来处理由数据终端设备输入的数据。

3数据通信的分类

3.1有线数据通信

数字数据网(DDN)。数字数据网由用户环路、DDN节点、数字信道和网络控制管理中心组成。DDN是利用光纤或数字微波、卫星等数字信道和数字交叉复用设备组成的数字数据传输网。也可以说DDN是把数据通信技术、数字通信技术、光迁通信技术以及数字交叉连接技术结合在一起的数字通信网络。数字信道应包括用户到网络的连接线路,即用户环路的传输也应该是数字的,但实际上也有普通电缆和双绞线,但传输质量不如前。

分组交换网。分组交换网(PSPDN)是以CCITTX.25建议为基础的,所以又称为X.25网。它是采用存储——转发方式,将用户送来的报文分成具用一定长度的数据段,并在每个数据段上加上控制信息,构成一个带有地址的分组组合群体,在网上传输。分组交换网最突出的优点是在一条电路上同时可开放多条虚通路,为多个用户同时使用,网络具有动态路由选择功能和先进的误码检错功能,但网络性能较差。

帧中继网。帧中继网络通常由帧中继存取设备、帧中继交换设备和公共帧中继服务网3部分组成。帧中继网是从分组交换技术发展起来的。帧中继技术是把不同长度的用户数据组均包封在较大的帧中继帧内,加上寻址和控制信息后在网上传输。

3.2无线数据通信

无线数据通信也称移动数据通信,它是在有线数据通信的基础上发展起来的。有线数据通信依赖于有线传输,因此只适合于固定终端与计算机或计算机之间的通信。而移动数据通信是通过无线电波的传播来传送数据的,因而有可能实现移动状态下的移动通信。狭义地说,移动数据通信就是计算机间或计算机与人之间的无线通信。它通过与有线数据网互联,把有线数据网路的应用扩展到移动和便携用户。4网络及其协议

4.1计算机网络

计算机网络(ComputerNetwork),就是通过光缆、双绞电话线或有、无线信道将两台以上计算机互联的集合。通过网络各用户可实现网络资源共享,如文档、程序、打印机和调制解调器等。计算机网络按地理位置划分,可分为网际网、广域网、城域网、和局域网四种。Internet是世界上最大的网际网;广域网一般指连接一个国家内各个地区的网络。广域网一般分布距离在100-1000公里之间;城域网又称为都市网,它的覆盖范围一般为一个城市,方圆不超过10-100公里;局域网的地理分布则相对较小,如一栋建筑物,或一个单位、一所学校,甚至一个大房间等。

局域网是目前使用最多的计算机网络,一个单位可使用多个局域网,如财务部门使用局域网来管理财务帐目,劳动人事部门使用局域网来管理人事档案、各种人才信息等等。

4.2网络协议

网络协议是两台计算机之间进行网络对话所使用的语言,网络协议很多,有面向字符的协议、面向比特的协议,还有面向字节计数的协议,但最常用的是TCP/IP协议。它适用于由许多LAN组成的大型网络和不需要路由选择的小型网络。TCP/IP协议的特点是具有开放体系结构,并且非常容易管理。

TCP/IP实际上是一种标准网络协议,是有关协议的集合,它包括传输控制协议(TransportControlProtocol)和因特网协议(InternetProtocol)。TCP协议用于在应用程序之间传送数据,IP协议用于在程序与主机之间传送数据。由于TCP/IP具有跨平台性,现已成为Internet的标准连接协议。网络协议分为如下四层:网络接口层:负责接收和发送物理帧;网络层:负责相邻节点之间的通信;传输层:负责起点到终端的通信;应用层:提供诸如文件传输、电子邮件等应用程序要把数据以TCP/IP协议方式从一台计算机传送到另一台计算机,数据需经过上述四层通信软件的处理才能在物理网络中传输。

目前的IP协议是由32位二进制数组成的,如202.0.96.133就表示连接到因特网上的计算机使用的IP地址,在整个因特网上IP地址是唯一的。

主站蜘蛛池模板: 亚洲高清视频免费 | 偷拍福利视频一区二区三区 | 9191在线观看 | 国产区h| 国产91综合 | 国产精品九九九 | 免费看麻豆视频 | 一二三区视频在线 | 国产成人精品亚洲日本在线桃色 | 亚洲免费美女视频 | 99热在线免费 | 91视频网页版 | 亚洲免费视频在线观看 | 一区二区三区四区久久 | 91chinese在线| 午夜一级在线 | 男人网站视频 | www.97色.com | 亚洲撸 | 国产精品一区不卡 | www.久久av.com | 国产精品一区不卡 | 国产一级特黄aa大片免费看 | 久久天堂精品 | www.国产91| 99国产精品久久久久久久 | 91免费视频入口 | www.97色.com| 午夜一区二区在线观看 | 亚洲免费福利视频 | 91成人破解版 | 伊人色私人影院蜜桃va | 久久久国产精品一区二区三区 | 日本网站在线 | 国产精品乱码一区二区三区视频 | 日本在线观看www | 成年免费黄色网 | 国产福利小视频在线 | 久久久久久久久久久久久久久国产 | 久久久免费视频网站 | 在线一区二区三区在线一区 |